
CrowdAI developer manual

Pablo González de Prado Salas

2018

Contents

1 Preface 2

2 Developing CrowdAI 2

2.1 Minecraft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1.1 New Minecraft world . . . . . . . . . . . . . . . . . . . 2

2.1.2 New Minecraft agent controller . . . . . . . . . . . . . 3

2.1.3 Using fitness . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Simulation parameters . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Website . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Publishing CrowdAI 9

4 Flow of the code 11

4.1 Starting the path from click to video display . . . . . . . . . . 12

4.2 Redirect to waiting page . . . . . . . . . . . . . . . . . . . . . 13

4.3 From RaiseStartEvolutionEvent to evolution ready . . . . . . 14

4.4 From genome evaluation to video files . . . . . . . . . . . . . . 16

1



1 Preface

Thank you for your interest in CrowdAI. This project explores collective and

interactive evolution of controllers for Minecraft agents, and it was designed

with the idea of making a platform that would be easy to adapt and extend.

Hopefully this guide will help you with that.

I am Pablo González de Prado Salas1, and this project was part of my

postdoc at itu with Sebastian Risi2.

Good luck, and don’t feel shy to contact us to let us know what you are

doing with the project or to ask for help if something is not clear!

2 Developing CrowdAI

In this section you will find a quick orientation for the most common changes

you would want to make in this platform.

Note: VisualStudio should be opened with administrator privileges!

2.1 Minecraft

In general, changes related to Minecraft are part of Project Malmo3, and you

should read their documentation for help. However, here we will identify the

relevant classes and provide some tips.

2.1.1 New Minecraft world

The basic template for the Minecraft world is stored in

Evolution/minecraftWorldXML.txt. This file is read by the ProgramMalmo

class. The world information is stored in the line:

<FlatWorldGenerator generatorString="3;7,45*48;,biome_1"/>

1gonzalezdepradosalas.weebly.com
2http://sebastianrisi.com
3https://www.microsoft.com/en-us/research/project/project-malmo/

2



Figure 1: Malmo can return information from tiles relative to the agent.

Note that the indexing is not relative to the agent’s orientation.

You have on-line tools to help create such strings for simple worlds. (See,

for example: https://goo.gl/CnbJNp). In case you want the standard game

world use <DefaultWorldGenerator/>.

It is likely you will need more complex structures, or procedurally created

content (walls, holes, etc.). You may create a dedicated class for this, which

ProgramMalmo will call. In our case, look at MazeMaker. In truth, the only

special command you need to know is the new block command (which works

on a MissionSpec object):

<mission.drawBlock(block.xCoord, block.yCoord,

block.zCoord, block.type);/>

2.1.2 New Minecraft agent controller

Class ProgramMalmo is responsible for creating Minecraft simulations. Peri-

odically, (see ProgramMalmo.MainLoop() is will create events, which pass in-

formation about the Minecraft world in their argument. See JsonObservations

for the list of available world parameters. These may be extended within

Project Malmo capabilities. As an example, we work with custom lists with

information of nearby blocks. These have been setup in the Minecraft con-

figuration file Evolution/minecraftWorldXML.txt within the field

<ObservationFromGrid>, as in Fig. 1. We use three such lattices (for infor-

mation from tiles with different vertical coordinates).

3



Because the indices are relative to the world compass and not the agent’s

orientation, we created a class to process these lattices (<ManyTiles>).

ProgramMalmo also sends commands to the Minecraft simulation, which

controls the agent (ProgramMalmo.ExecuteCommands()).

The agent controller is responsible for taking these world updates (in-

puts) and updating the list of commands in ProgramMalmo (outputs). You

can determine which class will do this in

OnlineMalmoPseudoEvaluator.Evaluate. In our case, we are using a

MazeControllerNoTurn class. Any controller that is created here must re-

ceive a reference to its corresponding ProgramMalmo object, and will sub-

scribe to the would update events. In the standard version each user has a sin-

gle ProgramMalmo object that will be used for all Minecraft simulations, but

in the parallel version each genome gets a unique ProgramMalmo/controller

pair.

This code is a minimal example of how the controller works

void WhenObservationsEvent(

object sender, ObservationEventArgs malmoInfo)

{

brain.InputSignalArray[0] = malmoInfo.DamageTaken;

brain.InputSignalArray[1] = malmoInfo.XPos;

brain.Activate();

if (brain.OutputSignalArray[0] > actionThreshold)

programMalmo.AddCommand("move 1");

}

Here “brain” is a phenome, or processed version of the genome. It is the

neural network responsible for taking inputs and producing outputs. The

responsibility of the controller is to translate world information into neural

network inputs, and neural network outputs into Minecraft commands.

Important! If you change the number of inputs or outputs used by the

neural network, you must update the properties InputCount and OutputCount

in MyExperiment. Note that InputCount is the number of inputs not consid-

ering bias (so if you are only using one input for, say, the agent’s x-coordinate,

here you would write “1”, not “2”).

4



2.1.3 Using fitness

ProgramMalmo is called from OnlineMalmoPseudoEvaluator which is used

to evaluate genomes. In our case this means taking a genome and producing

a video, but it is also possible to update the genome’s fitness. Notice this

class has access to ProgramMalmo and thus to the Minecraft world and the

simulation details, which may be used to produce a fitness value (pass zero

otherwise). If you want to use this fitness value, remember to check that it

is, in fact, used by the IGenomeListEvaluator used. For instance, we have

deactivated fitness update in

SerialGenomeListEvaluator.EvaluateOne (so that creating a video won’t

overwrite any fitness values, in case they are used).

The IGenomeListEvaluator that is used by evolution is determined in

SimpleNeatExperiment.CreateEvolutionAlgorithm (the method is over-

loaded, this information is in the main version, the one taking a genome

factory and a genome list).

2.2 Simulation parameters

There are many parameters driving a neat simulation. Here we will go

through all of them, which are inconveniently scattered across different classes.

NeatEvolutionAlgorithmParameters

This class controls the parameters relevant for the production of offspring.

Here we control the elitism proportion, asexual, sexual and inter-species re-

production rates. In general, these are not the first parameters to change.

NeatGenomeParameters

This class controls the parameters relevant for genome mutations. Here we

can adjust the initial connectivity of the network (proportion of possible

connections that will be randomly wired).

Very relevant: here we adjust the relative probabilities for the different

types of mutations. If add node is too high, for example, genomes will quickly

5



grow in size, which can be a problem both for the search algorithm and for

performance.

AuxState for nodes is not used in this version.

ConnectionMutationInfoList methods return the different types of mu-

tations for connection weights. We can add different types of mutation with

relative likelihoods of being selected! We have Gaussian perturbations (we

define the width of the Gaussian curve, the “sigma”) and connection resets.

We can also have a fixed number of mutations (say, “mutate five connec-

tions”) or establish a proportion (“mutate 30% of all connections”).

Note that during evolution we may load different mutation schemes (see,

for example, how CreateParametersForBigChanges is used

in NeatGenomeFactory).

Evolution/Malmo.config.txt

This file determines the population size, the number of species, the type

of network (feedforward or cyclic, and the number of activation iterations in

cyclic networks).

ComplexityThreshold and ComplexityRegulationStrategy determine when

the algorithm will try to start reducing the complexity of the genomes, us-

ing special parameter schemes from NeatEvolutionAlgorithmParameters

and NeatGenomeParameters (see CreateSimplifyingParameters methods

in both classes).

MyExperiment

In this class we only set the number of input and output nodes used by the

networks, as well as the class used to evaluate genomes (meaning assigning

a fitness value or, in our case, producing a video file).

However, this class inherits from SimpleNeatExperiment where many

important decisions are made. Most important is the method

CreateEvolutionAlgorithm (the one taking a genome factory and a genome

list). Here we decide:

• Distance metric (to compare genomes)

6



• Speciation strategy (to cluster genomes)

• Complexity regulation strategy. This is how it will be decided that

genomes are “too complex”, for example, by counting connections.

When too complex, the “simplifying” parameters are used, trying to

reduce genome complexity while retaining functionality.

• The evolution algorithm and genome-to-phenome decoders may also be

selected here (although these would not be minor changes).

• Genome evaluator, that take a list of genomes to update their fitness (in

our case, to produce videos). Note some evaluators may take other eval-

uators as parameters. For example, SelectiveGenomeListEvaluator

takes a genome list and prunes out genomes that have been already

evaluated, and then returns that list to another genome evaluator. Re-

member that the final evaluator, that takes only one genome, has been

set in MyExperiment.

PopulationReadWrite

Folder structure is determined here. It is important to set it up correctly! It

also determines whether we are working on debug or release (because release

creates a different tree of folders and we have to take that into account to

move files around!) Here we also choose the path for error messages and user

activity data (logs).

As a rule, you will need to check and possibly update any absolute paths,

while relative paths will probably be Ok (as long as you don’t alter the folder

tree).

2.3 Website

This project has been written using asp.net mvc4,5, which allows for nat-

ural integration of C#-based projects in web services.

4https://en.wikipedia.org/wiki/asp.net mvc
5https://www.asp.net/mvc

7



Website elements can be found in project inm. The folder “views” has

the html code for the different pages in the website. To add a new page,

simply right click on the desired folder and select Add→Views. . . . Note

that all views are associated to an action in a “controller” (it helps to be

consistent with the folder naming). These actions determine what happens

when a user navigates to that page. For example, a basic action for a page

called About (for example websiteName/Home/About) would be, within the

HomeController,

public ActionResult About()

{

\\maybe do stuff here? Let’s increment a variable:

++exampleVariable;

return View();

}

You may use more advanced front-end programming if you wish. The

folder Scripts contains many javaScript files.

You may want to change how inactive users are handled. Look at sec-

tion 4.3.

The last piece of the mvc puzzle is the “model”. From these classes we

can create objects needed in the user-server communication and are handled

in databases. We created the “candidate” class with information about the

controllers users evolve and publish (the controller name and description, the

parent id, the path to the video file, etc.). These objects may be passed to

views. See these two examples:

First example, that returns all candidates in the database:

// GET: Pictures

public ActionResult ShowSavedCandidates()

{

// This takes all pictures from the database

var allPictures = db.Candidates.ToList();

return View(allPictures);

}

8



The second example only passes three objects, corresponding to the three

active candidates in a user’s evolutionary process:

// This variable is defined in the controller class

private List<Candidate> candidates;

// Shows the candidate videos after each generation

public ActionResult Index()

{

string userName = HttpContext.UserIdentity();

// This resets the candidate objects that will be used

PrepareCandidateModels();

if (!CheckIfUserExists(userName))

{

return RedirectToAction("UnexpectedError");

}

// This fills the candidates with the right information

UpdateCandidatePaths(userName);

// The candidates are passed to View

return View(candidates);

}

3 Publishing CrowdAI

Publishing CrowdAI may be harder than expected, at least for non experts.

Most of the trouble derives from Project Malmo and its dependencies. So

your first step should be to carefully install Project Malmo, which you prob-

ably already did in order to develop your project.

Some project properties that may be relevant are:

Properties/Application: target framework, .NET 4.5.2.

Properties/Build: platform Active, (Any CPU); platform target, x64.

• I followed this procedure: https://goo.gl/GTbR6Y

9



Table 1: Application Pool parameters

.NET version v4.0

Enable 32-bit applications false

Managed pipeline mode integrated

Process model identity myUserName (superuser)

• Using Visual Studio, we published the project to a folder, and then we

setup the website using iis: https://goo.gl/ysvt2e

• Table 1 shows some important parameters that were used. Having

an Application Pool with superuser privileges is not a great security

measure. The alternative is to find and grant privileges for all the

processes that Malmo requires outside of its own folder, but this may

be hard to do, given the several dependencies associated with Malmo.

• Don’t forget folder permissions. We also added iis iusrs to the list of

user names. https://goo.gl/fNeY51

• Don’t forget to update the folder paths in the PopulationReadWrite

class (see Sec. 2.2).

• In the website folder you will find a Web.config file. In our case, Visual

Studio creates an incorrect file, with several references to the local

database (LocalDb)\mssqllocaldb. These need to be fixed, in our

case to userwin\sqlexpress.

• Sql may be troublesome. It is better that someone with some experi-

ence publishes the project. If you can’t have that, maybe these links

will help:

https://goo.gl/Hdh4dC

https://goo.gl/Hdh4dC

https://goo.gl/Vms7DJ

https://goo.gl/3qTJ1g

10



Figure 2: Webservice structure.

4 Flow of the code

CrowdAI is a web service, meaning that there is a server (backend) that

interacts with the users’ browsers (frontend). The service is implemented

using ASP.NET-MVC.

The main project in the solution (in Visual Studio a “solution” may be

composed by smaller “projects”) is responsible for the coordination between

client (user side) and server. This project is awkwardly named INM (like the

solution, from “Interactive neuroevolution in Minecraft”).

When an evolutionary process needs to be started or continued, then

project INM communicates with project Evolution, where this happens.

Project Evolution contains our version of Sharpneat for this.

Genomes are evaluated by humans (interactive evolution). For this hu-

mans need videos of Minecraft agents controlled by the different genomes. In

order to create this videos the project Evolution includes a Project Malmo

interface, which creates Minecraft simulations using external code (provided

via .dll files).

It is relevant to note that project INM has a reference to project Evolu-

tion, but not the other way around (which would cause a forbidden depen-

dence loop).

Thus we can identify the following different areas:

• Client (user interface)

• Client-evolution coordination

• Evolution

11



Figure 3: Visual Studio terminology: the “solution” is composed by different

“projects”.

• Minecraft simulations

We will now describe what happens, step by step, from the moment the

user clicks on “evolve” until they are presented with videos to choose, and

what happens after they do choose a candidate to continue the process. We

will also address how multiple users are treated to avoid conflicts.

4.1 Starting the path from click to video display

Many methods in the coordination project INM will require the userName.

This is done by giving users a cookie with a number, which will be their

ID for a month. See the classes ExtensionHelper and CookiesCounter for

more details.

When a user clicks the button “Evolve”, the method StartEvolution()

in CandidatesController is triggered:

12



public ActionResult StartEvolution() {

string userName = HttpContext.UserIdentity();

WriteLineForDebug("Requesting to start evolution!", userName);

if (EventsController.RaiseStartEvolutionEvent(userName))

{

return RedirectToAction("WaitingForEvolutionSetup");

}

else

{

return RedirectToAction("EvolutionBusy");

}

}

This method calls

EventsController.RaiseStartEvolutionEvent(userName)

and returns

RedirectToAction("WaitingForEvolutionSetup").

This sets two things in motion. On the one hand, it starts the process for

a new evolution process. On the other hand, it redirects the user to a new

page waiting until the process is done. We will cover both parts, which are

related.

4.2 Redirect to waiting page

It is not straightforward to redirect the user to a new website page. Instead,

we load the waiting page, and this page redirects automatically to a new

page. The url for the new page is returned by an “asynchronous” action:

<script type="text/javascript">

window.location =

"@Url.Action("WaitDuringEvolutionSetup", "Auxiliary")";

</script>

This action, in the class AuxiliaryController, will redirect to the new

page when a process is done (in this case, when the evolution setup is ready).

13



The code in this class is a bit involved, but it is easy to understand that

WaitDuringEvolutionSetupCompleted(bool success) returns the new url,

and this method is called if WaitForSetup() returns true. WaitForSetup()

returns false after a predefined waiting time, or true if

IsUsersEvolutionReady succeeds.

IsUsersEvolutionReady, like all the information relative to the user’s

status, is found in the User class, handled by ActiveUsersList (in project

Evolution/UsersInfo). In the next section, we will see when and how this

information gets updated for our new user.

If the process is successful, the url will be for a new waiting page, in this

case waiting for the candidate videos. This page works identically (automati-

cally redirecting to a new page via an asynchronous action). The final result,

if no problems are found, is the main evolution page, with three videos for

the user to see. But many things need to happen first.

4.3 From RaiseStartEvolutionEvent to evolution ready

The flow of the code takes us now to the class EventsController. The first

thing the method RaiseStartEvolutionEvent will do is to check if there are

simulation slots available. ActiveUsersList contains users that are already

active. If the new user is not there, ActiveUsersList first removes inactive

users. Actions like “evolve” update the idle time of the given user, if a

user has spent too much time without actions, they will be removed from

the active users list at this point. If not too many users are active, then

RaiseStartEvolutionEvent continues.

Then StartEvolutionEvent is launched, and this is received in

EvolutionCoordination.OnStartEvolution, which calls

StartOrRestartEvolution. When a user resets evolution or branches, the

code will also get to this point.

Depending on whether the user has an evolutionary algorithm (again,

ActiveUsersList has this information) we go to LaunchEvolution or

ReLaunchEvolution. Let us look closer at the LaunchEvolution path (they

are quite similar).

14



Now the process is very much plain neat for a while, but important

things happen:

• MyExperiment is created. This inherits from SimpleNeatExperiment

and decides the experiment parameters (notice that

EvolutionCoordinator is passing the path for a Malmo.config.xml file

to MyExperiment creator), as well as how genomes will be decoded into

phenomes and, crucially, how they will be evaluated (in our case, using

OnlineMalmoPseudoEvaluator, which in turn decides which controller

will run Minecraft agents).

Most importantly: in MyExperiment you should change the number

of input and output neurons. In Malmo.config.xml you change the

population size and number of species.

• SimpleNeatExperiment will create the NeatEvolutionAlgorithm, us-

ing for this the path for a possible saved population file (this used, for

example, when branching, and this file is reset for evolution reset).

Note: when the evolution algorithm is created it registers the user in

ActiveUsersList (where there will be a reference linking the user with

the evolution algorithm).

• EvolutionCoordination is subscribed to events in the evolution algo-

rithm (used mainly to save the population after each generation).

• A first module is added if not present. Genomes in this project

are compatible with a modular structure. When they are created they

only have a basic scaffolding. Here they are provided with a standard

module that connects all inputs and outputs (more technically: allows

these connections).

When Initialize is complete, LaunchEvolution continues by marking

the evolution as active in ActiveUsersList. Then evolution is properly

started in StartEvolution, which calls MakeEvolutionReady in the evolu-

tionary algorithm.

Here we can find the class ProcessNewGeneration. This class takes the

population and assigns to each genome and index that will let us know where

15



to display the video in the website (there are three positions). Currently, the

video that was chosen at one iteration will be displayed in the same place in

the next one, but there are other options, like all random or the one selected

always on top, etc. Genomes are set as not evaluated so that we make sure

that all videos are generated (except for the champion, because we already

have that video, which only needs a new file name).

The user status in ActiveUsersList is updated, letting

EventsListenerController know that evolution is ready.

This connects with the other process we have been following (see 4.2),

where the user had been redirected to the waiting page and was waiting

precisely for this update. Remember from the end of the previous subsection

that this will take the user to the new waiting page, “waiting for candidate

videos”. MakeEvolutionReady now asks the evaluator to “evaluate” the

genomes, which results in the creation of the videos. The user information

is again updated letting the user, finally, get to the main evolution page.

4.4 From genome evaluation to video files

Different evaluators may be chosen in SimpleNeatExperiment. Some may

parallelize evaluation of genomes. Others may skip re-evaluation of surviving

genomes from previous generations (elites). In our case all, in the end, call

Evaluate in OnlineMalmoPseudoEvaluator. This method takes a phenome

(or “brain”, the processed version of a genome) and creates for it an object

from the class ProgramMalmo. ProgramMalmo will create the Minecraft simu-

lation, and is able to pass commands to that simulation (so as to control it).

Before starting the simulation (ProgramMalmo.RunMalmo) an agent controller

is created. This takes the phenome and the ProgramMalmo, so that only the

brain from one specific genome will interact with this particular Minecraft

simulation.

Different Minecraft simulations are identified by a port. Trying to create a

new simulation in a used port will result in an error, and this specially delicate

if we allow for parallel evaluation of the genomes. userToPort dictionary

helps to handle this.

16



UpdateUserToPortDictionary assigns a free port to the new user. This

port is the first in the range assigned for the user.

ProgramMalmo.RunMalmo takes also an offset value to know exactly which

port in the user’s range should be used for the given simulation (this is

currently assigned in ParallelGenomeListEvaluator). The port is then

used to initialize a clientPool, which is how ProgramMalmo identifies the

correct Minecraft simulation to use.

We will only describe now the steps that are more relevant for the user.

For more details, go to the Project Malmo6 documentation.

ProgramMalmo can create events that will be received by the associated

agent controller. Now, it creates an event that will have the phenome used

by the controller reset (meaning the activation values of the neurones are set

to zero).

Then the “mission” is started. This will load a “minecraftWorldXML.txt”

file, which contains lots of information. See the current file as an example:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>

<Mission xmlns="http://ProjectMalmo.microsoft.com" xmlns:xsi=

"http://www.w3.org/2001/XMLSchema-instance">

<About>

<Summary>Great mission description!</Summary>

</About>

<ServerSection>

<ServerInitialConditions>

<Time>

<StartTime>1000</StartTime>

<AllowPassageOfTime>false</AllowPassageOfTime>

</Time>

</ServerInitialConditions>

<ServerHandlers>

<FlatWorldGenerator generatorString="3;7,45*48;,biome_1"/>

<ServerQuitFromTimeUp timeLimitMs="3000"/>

<ServerQuitWhenAnyAgentFinishes/>

6https://www.microsoft.com/en-us/research/project/project-malmo/

17



</ServerHandlers>

</ServerSection>

<AgentSection mode="Creative">

<Name>Paco</Name>

<AgentStart>

<Placement x="0.5" y="46.0" z="0.5" pitch="60" yaw="0"/>

<Inventory>

<InventoryItem slot="0" type="dirt"/>

</Inventory>

</AgentStart>

<AgentHandlers>

<ChatCommands/>

<ObservationFromFullStats/>

<ObservationFromGrid>

<Grid name="level0">

<min x="-1" y="0" z="-1"/>

<max x="1" y="0" z="1"/>

</Grid>

<Grid name="levelSub1">

<min x="-1" y="-1" z="-1"/>

<max x="1" y="-1" z="1"/>

</Grid>

<Grid name="levelSub2">

<min x="-1" y="-2" z="-1"/>

<max x="1" y="-2" z="1"/>

</Grid>

</ObservationFromGrid>

<DiscreteMovementCommands/>

<VideoProducer

viewpoint="1">

<Width>432</Width>

<Height>240</Height>

</VideoProducer>

</AgentHandlers>

18



</AgentSection>

</Mission>

Here we are giving a summary of the mission. Then the time of day is

set, and we block the pass of time. The basic terrain is generated and a

maximum simulation time is setup. Creative mode is chose, and the agent,

Paco, is placed in a specific place with a given inventory. Chat commands

are allowed and will be used to give orders to the agent, which will produce

“full stats” as feedback. On top of that, we create three grids, which will

return the block types of all blocks in them. Finally, discrete movement is

set (only one-block movement and 90-degree rotation).

Note we can change more things after loading.

mission.timeLimitInSeconds(10);, for example, sets a new time limit.

Here AddProceduralDecoration is called, and will add new blocks to the

terrain. See MazeMaker for more details.

Starting the mission has some potential for conflicts with multiple users.

We tried to minimize this by using try/catch structures.

The mission loop asks the agent to get feedback. These are given in Json

format, and are translated into normal types (stored in the JsonObservations

class). An observations event is created. Any commands received are sent

to the agent (and then the list of commands is reset). The thread sleeps for

an interval and the process is repeated. A video of the simulation is being

created in the meantime.

The agent controller class receives these “observation events”, and takes

the world feedback as parameters. This information is used to update the

inputs of the neural network, which is then “activated” (information flows

from input to outputs) and the outputs are translated into commands for

the agent, which are passed to ProgramMalmo. See this minimal example:

void WhenObservationsEvent(

object sender, ObservationEventArgs malmoInfo)

{

brain.InputSignalArray[0] = malmoInfo.DamageTaken;

brain.InputSignalArray[1] = malmoInfo.XPos;

brain.Activate();

19



if (brain.OutputSignalArray[0] > actionThreshold)

programMalmo.AddCommand("move 1");

}

When ProgramMalmo ends, the “evaluation” of the genome finishes.

OnlineMalmoPseudoEvaluator, which has access to ProgramMalmo, may re-

turn now a fitness value, which the evaluator (e.g., SerialGenomeListEvaluator)

uses to update the genome’s fitness (in our case, in the method EvaluateOne).

Before this happens, ProgramMalmo asks to create the candidate video,

and this is done by the important static class PopulationReadWrite. This

process involves extracting the compress save files and then renaming and

moving the video file to the correct folder for this user’s candidate videos.

20


